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Transient diffusion in two-dimensional geometries is considered. It is shown how the spatial variation 
of  the mass transfer-limited flux of  a minor species varies with time from initially uniform to the non- 
uniform, steady-state distribution. Flux distributions on sinusoidal electrode and on a line electrode 
embedded in an otherwise insulating plane are considered. A boundary-element method is used to 
solve the problem in Laplace transform space, and the results are subsequently inverted into the 
time domain. 
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1. Introduction 

Pulse electrolysis has been extensively investigated 
because it offers several advantages over steady-state 
processes [1-3]. Among these advantages is that the 
current distribution can be altered by adjusting the 
on and off times of the galvanic pulse. Some of these 
effects are discussed in [4-7]. Theoretical treatment 
of pulse plating may require the examination of 
transient, mass transfer-limited reaction rates of 
additives [8]. Mass transfer plays perhaps an even 
more crucial role in transient anodic processes 
[9, 10]. Other emerging technologies where transient 
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Subscripts 
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mass transfer phenomena are important include 
analytical microelectrode applications [11, 27], where 
high potential sweep rates are achieved during 
voltammetry [12], and mass-transfer sensors [13] for 
studying hydrodynamic fluctuations. 

The primary goal of this paper is to demonstrate 
transient mass transfer effects. The second objective 
is to discuss a solution procedure for solving the 
two-dimensional, transient-diffusion equation: 

Oc D(02~ 02{~ 
o-5 = + oF, J (1) 

A boundary-element method for finding numerical 
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solutions to Equation 1 in Laplace transform space is 
used. The solutions are subsequently inverted into the 
time domain. Such a solution procedure has been dis- 
cussed by Ligget and Liu [14] and Brebbia et al. [15], 
but has not been used previously in electrochemical 
systems. 

The efficacy of the numerical method is evaluated 
for the two geometries shown in Figs 1 and 2. The 
geometry of Fig. ! might represent sinusoidal rough- 
ness on an electrode and is often used for model 
studies of anodic levelling [16-18]. The second prob- 
lem (Fig. 2) corresponds to a two-dimensional line 
electrode embedded in a coplanar insulating plane. 
The steady-state current distribution on this elec- 
trode has been given by Wagner [19]. Diem et al. 
[20] treated the finite-domain cell. Due to the singular- 
ity at the electrode edge, this problem is a particularly 
challenging test of the numerical method. 

2. Theory 

Equation 1 can be made more tractable by intro- 
ducing the dimensionless variables: 

Yc f; coo - ~ D t x=z ;  Y=Z; (2) 

where L is a characteristic length and c~ is the bulk 
concentration. Substitution of these definitions into 
Equation 1 gives 

0C 02g oq2e 

Oq- - -  OX  2 -'}- Oy ~ (3) 

The application of the Laplace transform method 
to partial differential equations is found in many 
standard texts [21]. Equation 3 becomes 

02~ 02~ 
se - c~ = o = ~ -~ Oy2 (4) 

where e~=0 is the dimensionless concentration at zero 
time, and 

= = Jo  
(5) 
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Fig. 1. Schematic of the computational domain used to simulate 
transient, mass transfer-limited flux distributions on a sinusoidal 
electrode. 
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Fig. 2. Geometry used to simulate mass transfer distributions on a 
two-dimensional line electrode. 

Equation 4 is sometimes known as the modified 
Helmholtz equation [21]. The boundary conditions 
would be transformed in the same manner. 

2.1. Boundary integral equations 

The use of Green's functions for solving partial 
differential equations is described, for example, by 
Greenberg [22]. It can be shown that Equation 4 can 
be reformulated as an integral equation: 

O~C(Xq,yq;S) = Iv  (g(x'y;s)OC(~-nY;S) 

+ .[ L C ~ = o ( x , y ) g ( x , y ; s ) d x d y  (6) 

where a = 1 if the point Xq,yq is inside the domain, 
a = 0 when the point is outside the domain, and 
a = 1/2 if the point is on a locally smooth boundary. 
The first integral on the right side of Equation 6 is a 
line integral along the closed path ~, which is taken 
to be in the counterclockwise direction around the 
simply connected boundary I ~. The second is an area 
integral over the computational domain. The inte- 
grand depends on the known initial conditions; thus, 
the integral must only be evaluated once for each 
point Xq, yq. 

The Green's function g is given by [14] 

g(x, y; s) = 1 Ko (rv~) (7) 

where K 0 is the modified Bessel function of the second 
kind of order zero, and 

r = [(x -- Xq) 2 -[- ( y  - -yq)2] l /2  (8) 

The normal component of the gradient of the Green's 
function is given by 

Og _ V'SK1 ( r v ~ )  O r  
On 4re Onn (9) 

where K 1 is the modified Bessel function of the second 
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kind of order one. Polynomial approximations of Ro 
and K1 can be found in Abramowitz and Stegun 
[23]. Equations 6-9 are solved for values of s that 
are chosen to facilitate the inversion of the results 
from Laplace space into the time domain. 

The boundary conditions that are assumed in this 
study are 

Oc/On = 0 along all insulators ) 

c = 0 at the counterelectrode for all times 

c = 1 at the working electrode for all "r > 0 

(10) 

and the initial condition is 

c = 0 at T = 0 for all x and y (11) 

In Laplace transform space, the condition along the 
working electrode becomes 

= 1Is (12) 

and the homogeneous boundary conditions for g are 
the same as the conditions on c. 

3. Numerical method 

3.1. Boundary-element method 

With initial condition 11 (c~= 0 = 0), Equation 6 for 
points Xq,yq outside of the domain (a = 0) takes on 
the following form: 

=j?(g(x,y;s)O?(~-:;s).)d~ (13) 

Equation 13 is identical to the integral equations used 
for previous calculations of current distributions [24]. 
As a result, the same algorithms may be employed 
simply by replacing the Green's function and its 
normal derivative with those given in Equations 7 
and 9. The boundary-element formulation suggested 
by Equation 13, where the nodal points Xq,yq a r e  

outside the domain instead of on the boundary, has 
been discussed previously by Walker [25]. 

For numerical solution, at a given value of s, the 
boundary of the domain is discretized into nj 
linear two-point elements, numbered sequentially 
in the counterclockwise direction around the 
domain boundary. Boundary coordinates, trans- 
formed boundary concentrations and concentration 
derivatives along an element j are then given by the 
following linear interpolation expression: 

where 
Z = X  

z = y  

Z~---C 
O? 

On 

1 - ~  l + a  
zj = ~ z l ,  j + ~z2,: (14) 

for x-coordinates 
for y-coordinates 
for transformed concentrations 

for normal concentration derivatives 

with indices 1 and 2 denoting respectively the tail and 
head of the element. The variable cr, where 
-1 ~< c~ ~< 1, represents a dimensionless arc length 
along an element from the tail ( a = - l )  to the 
head (or = 1). In the present study, higher-order 
interpolation functions were not considered. 

As in previous studies [24, 31, 32], boundary points 
are shared for adjacent elements when the same 
boundary conditions are imposed, but are doubled 
when the conditions are different (i.e. the same 
geometrical coordinates at the intersection of two 
elements correspond to two distinct node points, 
each subject to the boundary condition imposed on 
one of the adjacent elements). Depending on the 
number of elements and on the number of doubled 
points, the discretization procedure results in a 
number of distinct node points n i where n i > nj. 

Alternative discretization procedures to node-point 
doubling at the electrode/insulator edges were not 
considered. 

Depending on the boundary conditions, at each 
independent node i either the transformed concen- 
tration ~ or the transformed normal gradient OO/On 
of the concentration is known. Hence for n i node 
points, n i independent equations in the form of 
Equation 13 are necessary. Each equation represents 
an integral over the entire boundary using the 
Green's function gq(x,y;  s) associated with the point 
Xq,yq. Following the discretization procedure, each 
Equation 13 may be written as a sum of nodal 
unknowns multiplied by appropriate integrals over 
the element lengths. The resulting set of equations 
can be solved by conventional matrix methods (we 
used Gauss-Jordan elimination with full pivoting). 

For the matrix procedures to be effective numeri- 
cally, the points Xq,yq for each Equation 13 are 
chosen to be near one of the node points on the 
boundary. The resulting matrix equations are then 
diagonally dominant, which facilitates their inver- 
sion. If the points are too close to the boundary, 
however, numerical difficulties resulting from the 
singularities in the Green's function may occur. 
Consequently, a compromise in the selection of the 
positions is necessary, and the suggestion of Walker 
[25] has been adopted here (points Xq,yq a r e  generally 
chosen to be located outside of the domain a normal 
distance from a given nodal point equal to the 
average length of the two elements intersecting at 
that node.) For doubled points, special attention 
must be given to avoid two Xq, yq at the same position. 

For all results reported in this study, boundary 
nodes were placed to assure a nearly uniform element 
length everywhere on the boundary. The element 
length was set by dividing the working electrode 
into 80 elements. Doubling the number of elements 
did not change appreciably the simulation results. 
Gaussian quadrature was employed for numerical 
integration. It was found that 12-point and 24-point 
formulae give essentially identical results; hence, the 
12-point formulae were employed for the results 
shown below. 
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3.2. Inversion of Laplace transforms 

If  Laplace-space solutions are found for N values of s, 
time-domain answers can be determined by a series 
expansion of  N assumed functions of  time with 
known Laplace transforms [14, 28]. The inversion is 
achieved by expanding the concentration gradient at 
each point j as a series of N known time functions: 

N 
qj - q j ,  ss = ~ A i ,  jfi(r) (15) 

i=1 

where 

OC 
q = o n  (16) 

The Laplace transform of  Equation 15 evaluated at 
s -- Sg can be expressed as 

N 
qj(sk) qj, ss _ E Ai, jfi(sk ) (17) 

Sk i=1 

Since N values of  ~j(Sg) are known, the unknown 
coefficients Ai, j can be evaluated by inverting an 
N x N matrix. The procedure is repeated for all 
points j. 

The functions f.(-r) must have known Laplace 
transforms and are generally chosen by recognizing 
the features of the expected solution. The functions 
used here to predict the flux distribution in response 
to a step change in the surface concentration are 

J} (r) = exp (-/~i T) (18) 

The corresponding Laplace-space functions are 

1 
- (19) f/(S) /~i -[- S 

The N constants/3 i were arbitrarily set equal to the N 
values of  si used in the calculations. Consequently, 
Equation 17 becomes 

qj,__ss ~ A. .  ~j(sk) - -  " J  (20) 

To accomplish the inversion into the time domain, 
it is recommended that the N values of s be chosen 
according to 

{Smax'~(k-1)/(N-l) 
S k ~--- Smin ~S~-.n ) (21) 

where Smi n and Sma x are the minimum and maximum 
values of  s. For  both problems studied here, the 
following parameters were used: Stain = 0.001, 
Smax = 1000, and N = 13. It was found that increas- 
ing or decreasing stain and Smax by an order of magni- 
tude did not significantly change the time-domain 
results. Likewise, results did not change significantly 
for 10 ~< N ~< 16. 

4. Sinusoidal  e lectrode 

Figure 1 shows the cell geometry used to study a sinus- 
oidal electrode. The counterelectrode is assumed to be 

placed at a distance 3e from the maximum height of 
the working electrode. Clerc and Landolt  [18] 
show that the steady-state flux distribution is 
unchanged by placing the counterelectrode at further 
distances from the working electrode. Consequently, 
the influence of the counterelectrode must also be 
negligible during a transient. For  this geometry, the 
characteristic length was chosen to be L = A/2. 

Results are given for three amplitude-to-wavelength 
ratios. Figure 3 shows the steady-state, diffusion- 
limited flux variations for these three ratios. The solu- 
tions were obtained by a boundary-element method 
for Laplace's equation [24]. The spatial variation 
increases as the dimensionless amplitude increases. 

Figure 4 shows the spatial variation of  the dimen- 
sionless Laplace-space fluxes for various values of s 
for e/A = 0.25. As s ~ oc, corresponding to r --+ 0, 
the distribution of  the mass transfer rate becomes 
uniform. This is expected since the diffusion-layer 
thickness is initially infinitesimally small and follows 
exactly the surface contour. 

Figures 5, 6 and 7 show the variation in the time 
domain for various dimensionless times. For  compari- 
son, the steady-state solution (dotted line) is shown. It 
can be seen that the spatial variation of the normal 
flux near the electrode edges is in accord with what 
should be expected for a 90 degree angle of inter- 
section between the electrode and insulators [30]; i.e. 
the first derivative of  the flux distribution at the elec- 
trode edge is zero. Roughly speaking, for all dimen- 
sionless times r > 1, the steady-state variation of the 
flux is valid, and for all r < 10 -3, the distribution is 
nearly uniform. It is seen that the time required to 
reach steady state increases with the dimensionless 
amplitude. 
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Fig. 3. Steady-state flux distribution on sinusoidal electrode for 
three amplitude/wavelength ratios. 
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Fig. 4. Normalized s-domain flux distributions for an amplitude/ 
wavelength ratio of 0.25. 

5. Two-dimensional line electrode 

A two-dimensional  line electrode embedded in an 
insulat ing plane is shown in Fig. 2. To avoid numeri -  
cal complicat ions,  a finite doma in  is assumed. The 
side insula t ing wall is placed at x = 2W, and  the 
counterelectrode is at y = 2 W. The steady-state flux 
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Fig. 5. Normalized flux distributions at four times for e/), = 0.125. 
The steady-state distribution is indistinguishable from the 
distribution at ~- = 1. 
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Fig. 6. Normalized flux distributions at four times for e/A = 0.25. 
The steady-state distribution (dashed line) is shown for comparison. 

d is t r ibut ion of the f ini te-domain geometry is nearly 
indist inguishable from that  of  the semi-infinite 
domain.  For  the results reported below, L = W. 

Figure 8 shows Laplace-space flux dis t r ibut ions 
for four values of s. Again,  the nonun i fo rmi ty  
increases as s decreases. Near  x/L = 1, irregularities 
in the numerical ly  calculated flux dis t r ibut ion are 

observed. Increasing the node  density decreases the 
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Fig. 7. Normalized flux distributions at four times for e/A = 0.5. 
The steady-state distribution (dashed line) is shown for comparison. 
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distance f rom the electrode edge where such irregu- 
larities occur. Nevertheless, without using special 
interpolation functions near the singular points, 
it is quite difficult to eliminate the irregularities 
completely. This is a well known problem when 
boundary-element methods are used for Laplace's 
equation. The problem may be especially noticeable 
when the angle of  intersection between the electrode 
and insulator is obtuse. Experience has shown that 
the errors often do not propagate  throughout the 
computat ional  domain [29]. 

Figure 9 shows flux distributions for various dimen- 
sionless times. For  7- > 1, the flux distribution is 
nearly identical to the steady-state distribution 
(dashed line). For  7- < 10 -3, the distribution is practi- 
cally uniform except for a small region near x = L. 
Resolution of  the flux distribution near this edge 
would require a singular-perturbation analysis, 
which is beyond the scope of  this work. The non- 
smooth behaviour in the edge region results from 
the irregular Laplace-space solutions obtained f rom 
the boundary-element method. 

In addition to the normalized flux distribution, 
knowledge of the variation of  the average flux 
with time may be interesting. Figure 10 shows the 
simulated temporal  variation of  the average flux 
normalized by the steady-state, average flux. For  
comparison, the dashed line gives the asymptotic 
short-time behaviour: 

1 
qavg(7- ~ 0) -- x/(TrT-) (23) 

The asymptotic solution is approached for 7- < 0.05. 
The kink in the curve near 7- = 0.07 is a numerical 
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,UI t t t i 
0.0 0.2 0.4 0.6 0.8 ' 

x/L 

.0 

Fig. 8. Normalized s-domain flux distributions on a two- 
dimensional line electrode for four values of s. 

1.75 r 1 T T 

1.50 

1.25 

1.00 z = 0.001 

"~ = 0.03 

~ = 0 . 2  
0.75 ~ . - ~ - - -  

- - S t e a d y  state 

0.50 ~ _ _ . t ~ /  
0.0 0.2 0.4 0.6 0.8 1.0 

x/L 

Fig. 9. Normalized flux distributions on a two-dimensional line 
electrode at four times. The steady-state distribution (dashed line) 
is shown for comparison. 

artifact, associated with the inherent difficulties in 
performing numerically an inverse Laplace transform. 

6. Discussion of  numerical method 

One objective of  this paper  is to present a numeri- 
cal method for solving the two-dimensional, 
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1.0 , i " .  I 
0.0 0.1 0.2 0.3 0.4 
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Fig. 10. The average flux, normalized by the steady-state average 
flux, as a function of time as predicted by the BEM simulations 
and the asymptotic solution valid at short times. 
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transient-diffusion equation. Two issues are involved 
in the evaluation of  the numerical technique. The first 
is whether boundary-element code, in which many 
electrochemists have invested a significant amount 
of time, can be easily extended to investigate 
other phenomena governed by linear operators. The 
second issue concerns the effectiveness of  the Laplace 
transform approach to handling transient-diffusion 
problems. 

The development of a numerical method can be 
tedious because it is often necessary to search for opti- 
mal parameter settings that cannot be a priori  chosen. 
Such an optimization was performed for the steady- 
state, two-dimensional diffusion operator. It was 
subsequently discovered that the same settings are 
adequate for the axisymmetric operator, which has a 
different Green's function. Here, a third Green's 
function was tested. We again found that it was not 
necessary to vary parameter settings. These are 
promising observations because they suggest that 
boundary-element code optimized for the Laplace 
operator can be easily upgraded into code for a large 
number of linear differential operators with known 
Green's functions. 

The second point of  this paper is to explore one 
possible way of solving Equation 1. Brebbia et al. 
[15] and Pina and Hernandes [26] discuss an alterna- 
tive formulation using a boundary-element method. 
The alternative procedure approximates the time 
derivative in Equation 1 by a finite-difference 
equation and involves solving the boundary-integral 
equations at successive timesteps. They suggest that 
this procedure is more general, and would be 
especially useful when the boundary conditions are 
complicated functions of time. The Laplace trans- 
form method is potentially more efficient, but inver- 
sion back into the time domain can be difficult. 
Consequently, since the cost of  computation con- 
tinues to decrease, we also recommend the more 
robust method. 

7. Summary 

Boundary-element methods designed for solving 
Laplace's equation can be extended to solve the modi- 
fied Helmholtz equation. Results of these simulations 
correspond to solving the two-dimensional, transient- 
diffusion equation in Laplace transform space. For  
the two cell geometries investigated here, fitting 
the numerical results to a series of functions with 
known inverse Laplace transforms successfully 
yielded time-domain solutions. 

The mass transfer distribution in response to a step 
change in surface concentration is initially uniform. 
For  a two-dimensional line electrode embedded in a 
coplanar insulating plane, the flux distribution is 

roughly given by the steady-state distribution for all 
dimensionless times "r > 1. The mass transfer distri- 
bution to a sinusoidal electrode was also considered. 
For  the cases studied, the dimensionless time neces- 
sary to approach steady state was also found to be 
of the order of  one, increasing slightly with the 
amplitude/wavelength ratio. 
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